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Abstract. We present a theoretical study of the transport through a narrow constriction in a 
two-dimensional gas of independent electrons, when a potential of arbitrary shape in the 
longitudinal direction is placed inside the channel. In particular we model a double-barrier 
potential obtaining a reasonable agreement between our theory and the experiment of Smith 
and co-workers. The resonant structure observed in the conductance is found to be very 
sensitive to sample disorder. Predictions are made for a single potential barrier placed within 
the split gate. 

1. Introduction 

It has been demonstrated that the 2~ electron gas in a GaAs-AlGaAs heterojunction 
can be manipulated in a controlled way by the ‘electrostatic squeezing’ arising from a 
potential applied to a split Schottky gate (Thornton et a1 1986). In this way a transition 
from 2~ to ID can be induced and, if the length of the ID channel is less than the scattering 
length, ballistic transport can be observed with the conductance showing steps of height 
2e2/h (van Wees et a1 1988, Wharam et a1 1988). Subsequently Smith et al(l988) studied 
the conductance of a similar system in which the metallisation was such that two narrow 
potential barriers were introduced into a ID electron gas; see figure 1. Increasing the 
magnitude of the potential results in the formation of a lateral quantum box of side 
0.3 pm, in which the electron gas is quantised in all three directions. 

In this paper we calculate electron transport using a simple but realistic model that 
takes into account the channel geometry, and the potential shape inside the channel, 
and we compare the results with the experiments of Smith et a1 (1988). We model the 
experimental geometry by two wide regions of width Win the X-Y plane joined by a 
narrow channel of length L and width W’ < W. The channel walls are assumed to be 
infinite potentials and along the channel there is a potential V(x) of arbitrary shape. We 
shall use the effective-mass approximation, so the electrons are considered free and 
independent particles. The model is an extension of the WNW (wide-narrow-wide) 
model used previously by Szafer and Stone (1989) (from where the nomenclature has 
been taken), and by Kirczenow (1989) which was developed to explain the resistance 
quantisation. (In those calculations the only cases considered were, V(x) = 0 (Szafer 
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Figure 1. The potential shape inside the barriers used in the calculations. All the lengths in 
barrier I1 are multiplied by a factor (Y while the height is multiplied by a factor E .  (Y is a 
measure of the barrier height anisotropy and E is a measure of the barrier width anisotropy. 
Both E and (Y = 1 for figures 2 and 3 (symmetric barriers), but change in 4 and 5. The 
various lengths that define the potential are: W = (0.38 + 0.158 V,) pm,  A ,  = 25 nm, A 3  = 
(a  - 0.158 V,) pm with a = -0.039, V,,, = 
(-6.324 - 21.23 V,) meV and V ,  < -0.6 V. V,,, is the maximum of the channel potential, 
and in all the equations V ,  is in volts. 

A 4  = 0.5 pm - 2(Al + A*) - A3,  

and Stone 1989) and V(x) = constant (Kirczenow 1988) .) We mention here that the self- 
consistent calculations of Laux et al(1988) point to a parabolic-flat-parabolic confining 
potential in they direction, where only the flat region width changes with gate voltages. 
Wharam et a1 (1989) used this potential for calculating the gate voltage and magnetic 
field dependence of the steps of conductivity and obtained excellent agreement with 
experiment. Such a potential makes the calculations much more complicated and 
requires a great deal of computer time; however, Kirczenow (1989) using a parabolic 
confining potential gets qualitatively the same results as in the infinite-square-well 
confining potential for the case V(x) = constant. 

2. The Formalism 

We adopt the formalism and methodology of Szafer and Stone (1989), but extend it to 
cover the case of varying V(x) by regarding the channel as made up of many short 
segments in series. The potential within each segment is constant (so in fact we are 
discretising the potential), and the transmission and reflection coefficients are calculated 
and matched not only at the entrance and exit of our channel, but at each of the internal 
segment boundaries as well, A transfer matrix formalism enables us to calculate the 
transmission kernel A,, for the entire channel (Szafer and Stone (1989)). We also adopt 
a partial decoupling of the equation which they refer to as the mean-field theory (MFT); 
this leads to an error in the conductance of the order of 5 1 0 % .  

As an extension of the Szafer and Stone case, we can write the current, when a small 
drift potential is applied between the wide regions, as 

with 
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where the summations are as follows: w denotes the lateral quantisation index within 
the wide regions and the summation is restricted to those values of wavevector that give 
an energy less than the Fermi energy; the discrete levels within the channel are indexed 
by n in the exit segment, and relevant transmission coefficient t ih  is taken from the 
previous calculations, i denoting the fact that the transfer matrices of the i internal 
segments have been multiplied to give tii. From this we extract the conductance G as 

This method of calculating the conductance is equivalent to using the Landauer type 
formula G = (e2 /h)  Tr(tt*) derived by Fisher and Lee (1981), and Economou and 
Soukoulis (1981). This seems to be the physically relevant version, at least before a 
better understanding of how to introduce the physics of reservoirs in the calculations 
appears. The Buttiker et a1 (1985) formula gives the same result for the case where 
ws W ' .  

The temperature dependence of the conductance is approximated by 

G(EF, T )  = lox G(E, T =  0)(-6f(EF, E)/6E) d E  (4) 

where 

f(EF, E)  = (1 4- exp[(E - EF)/~T]}- ' .  ( 5 )  
The transmission coefficient in a zero-dimensional device is rich in structure and the 

resulting resonances in the conductance can have a stronger temperature evolution than 
those calculated from this equation because, not only does the Fermi distribution change, 
but also the inelastic scattering time alters, which affects the resonances when the 
scattering time becomes shorter than the tunnelling time (Payne 1988). 

3. The longitudinal channel potential 

In order to do a semiquantitative comparison with the experiment of Smith et a1 (1988), 
we have modelled a realistic longitudinal potential inside the channel. Our chosen 
potential shape is depicted in figure 1 where the curves are sine-like functions. In this 
model the regions of width A 1  reflect the potential curvature found in the Laux et a1 
(1988) calculations, while the regions of width A2 simulate the capacitance edge effects. 
These edge effects also reduce the potential under the narrow-gate regions, so at gate 
voltages, which have defined the channel under the large gate areas, the barriers are still 
lower than the Fermi level. The barrier height is expected to depend on the distance 
between the gate regions and the ZDEG (70 nm in this case), and on the doping of the 
GaAs and AlGaAs layers over the ZDEG. It is difficult to estimate its value, and it will be 
fitted later. The variation of A 3  and W with gate voltage has been estimated from the 
experiment of Wharam et a1 (1988). The dependence of the maximum of the channel 
potential with gate voltage has been adjusted assuming a linear relationship, obtained 
by fitting the potentials and voltages for the sixth-channel disappearance and pinch-off, 
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Figure 2. The G-Vg curves for: (curve A) exper- 
imental results for T = 330 mK; (curve B: C and 
D) the model of figure 1,  with A2 = 20,35,70 nm 
respectively, (curve E)  a square potential version 
of the model of figure 1 (see the text). All model 
calculations are for T =  OmK. The arrows 
marked from 1 to 6 indicate the voltage at which 
classically channels 1 to 6 disappear. Each curve 
has been shifted with respect to the preceding 
curve by 3e2/h for clarity. 
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Figure 3. The temperature dependence of the G- 
V ,  curves. The broken curve is the experimental 
result for T =  330mK, and the full curves are 
calculated ones. Curve A is calculated for T =  
500 mK, curve B for T = 300 mK and curve C for 
T = 0 K.  The arrows have the same meaning as in 
figure 2. The curves for different temperatures 
have been shifted by 3e2/h each time for clarity. 

i.e. fixing the voltage values for the sixth and first arrows in figure 2. The rest of the 
parameters were taken assuming that the lengths have their nominal lithographic values 
when the channel is defined at V,  = -0.6 V. All the appropriate lengths are given in 
figure 1. E, = 11 meVandm* = O.O67(inelectronmassunits)forelectronsinthesystem 
used in the experiment. The parameters a and E in figure 1 are used to change the 
potential shape, and introduce disorder into the system. 

4. Results 

4.1. Effect of gate voltage 

In figure 2 the experimental dependence of conductance versus gate voltage for T = 
330 mK are shown (curve A).  The calculated results for the symmetric barriers, with 
different values of A2 (the capacitor edge effect), are shown for T = 0 (curves B-E). 
The calculated variation of G with Vg for the bigger value of A2 typically shows a stepped 
structure with a resonant peak over each step. This is because when EF - V,,, is smaller 
than the minimum energy in the nth band, E,, the electron in the nth band finds a large 
classically forbidden region, and does not carry current unless it finds a resonant state. 
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As the A ,  value gets smaller, tunnelling effects are more important, and the G versus 
V,curve is less step-like. However, when the smooth region of the potential (with length 
A, + A,) is shorter than the Fermi wavelength (45 nm in this paper), the reflection is 
greatly enhanced from the now sharp potential corners, resulting in a smaller total 
conductance which contains many resonances as can be seen from curve E of figure 2. 
This graph shows the G-V, dependence with a potential inside the channel composed 
of two square potentials with width 2 A 2  + A3,  separated by a zero-potential region of 
width 2 A  + A 4  symmetrically placed in a channel of length 4 A  + 4A2 + 2 A 3  + A4,  and 
with the same gate voltage dependence for the two barrier heights as for curves B-D. 
The structure is very different from that observed exprimentally. Using these curves we 
have chosen the value A 2  = 35 nm (curve C), as the value that best fits the experimental 
result (curve A) ,  and therefore has been used for the following results. As the gates are 
separated from the ZDEG by 70 nm a value of 35 nm for the rounding due to  capacitance 
edge effects is not unreasonable. 

The structure seen in the conductance, when the gate voltage is swept to negative 
values, depends critically on the rounding assumed for the top region of the potential 
barriers, A2. When this rounding becomes smaller than the Fermi wavelength the 
transmission coefficient for each sub-band has many sharp dips that approach zero and 
are closely spaced in gate voltage. However, simulations show that the structure seen is 
not at all critically dependent on the rounding of the bottom of the barrier, A l .  

4.2. Effect of temperature 

The temperature dependence of the conductance versus gate voltage is shown in figure 
3. The resonances are smeared, with the dips in conductance tending to higher values 
and the maxima to smaller ones. This differs from the experiment in which the dips in 
conductance quick!y disappear as the temperature is raised. The dips in conductance 
result from a build up of a localised state between the barriers which is destroyed at 
higher temperatures, when the inelastic length becomes longer than twice the separation 
of the barriers. In our simulations we have not included the effect of a changing inelastic 
length, but have just used equations (4) and ( 5 ) .  

4.3. Effect of asymmetry o n  the double-barrier potential 

We simulate asymmetry of the gate lines by changing the parameters cu and E ,  defined 
in figure 1. Although in real systems differences in the gate linewidths implies different 
channel potential widths and different channel potential maxima, we shall show these 
effects separately for conceptual clarity. 

The effect on the G-V, curve of a barrier height asymmetry (values of CY different 
from 1) is shown in the curves A and B of figure 4. For small deviations of cufrom 1, i.e. 
when the maximum of one of the barriers is slightly bigger than the other, the resonance 
diminishes greatly. For cu = 0.9, the resonances have disappeared and the conductance 
is more step-like. This effect explains why only a small number of samples tested show 
such strong peaks in the G-V, curve. Only those in which the two narrow-gate lines 
perpendicular to the current are nearly equal in width will show resonances. 

The effect on the G-V, curve of asymmetry in the width of the barriers ( E  # l), is 
presented in curves D and E of figure 4. The width difference diminishes the resonances 
and the curve is smeared; however, this effect is much smaller than that resulting from 
the different barrier heights, discussed before. When the difference in width is 40% 
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Figure 4. The G-V, curves showing the variation 
with asymmetry in the channel potential. For 
curves A and B,  CY = 0.9, 0.95 respectively, and 
the barrier widths are equal. For curves D and E,  
E = 1.2, 1.4 respectively, and the barrier maxima 
are equal. Curve C i s  the result for the symmetric 
double barrier (CY = 1, E = 1). The arrows have 
the same meaning as in figure 2. Each curve has 
been shited with respect to the preceding one by 
3e2/h. 
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Figure 5 .  The G-V, curves for one single barrier 
inside the channel ( E  = 0) for: (A) the gate line- 
widths used in the experiment; (B) narrower gate 
lines; (C) wider gates lines (see the text). The 
arrows have the same meaning as in figure 2 .  

resonances can still be observed. We point out that the results presented in the curves 
D-E can change greatly when the model parameters are changed; for example, for 
narrow-gate lines, the G-Vg curve is smooth, but by making E bigger step-like structure 
develops. 

4.4 .  A single barrier 

The (Y = 0 case (only one barrier inside the channel) is shown in figure 5 for three 
different widths of the gate lines. In curve B, the width is the same as used in figures 1- 
4, and the conductance versus gate voltage is step-like, due to the removing of sub-bands 
when the gate voltage gets smaller. The comparison between this result and the two 
barriers with a = 0.9 shows that the more relevant features of the result are due to the 
region near the potential top. Curve B in figure 5 is the simulation for a narrower gate 
line. For this a value of A 3  = (-0.095 - 0.158 V,) pm is used and because tunnelling is 
important a smoother curve results. For curve C A 3  = (0.04 - 0.158 V,) pm which is a 
wider line leading to resonances due to  reflections in the ends. This change in the G-V, 
curve is similar to  the one found by Szafer and Stone (1989), and Kirzcenow (1988) in 
the V(x)  = 0 case, when the channel length is decreased. Although in the case presented 
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here the results are less easily explained (because there are more length scales involved, 
and the potential inside the channel does not have sharp corners). 

Simulations therefore show that with a single fine line the structure in conductance 
versus gate voltage becomes less dramatic as the linewidth of the barrier is reduced. 

5. Conclusion 

In summary, we have presented a model for calculating the conductance in a ZDEG of 
independent electrons with a constriction, when a potential inside, of arbitrary shape in 
the longitudinal direction, is defined. A double-barrier potential has been modelled and 
we obtained reasonable agreement with the experiment of Smith e t a f  (1988). In order 
to get this agreement, it is very important to assume a rounded potential top region 
which extends over half the distance that the gate is separated from the 2DEG. This is due 
to capacitance edge effects. The experimental results can be explained in terms of a 
variation in the transmission coefficients induced by the barriers, and were found to be 
very sensitive to the sample asymmetry. Predictions have been made for a single barrier 
inside the channel and it was shown that no better quantisation in the conductance, with 
gate voltage, is expected in this case than in the case in which the sub-bands are removed 
by changing the channel width. This point deserves further study and experimental 
confirmation. 
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